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New Insights Into the Pathogenesis of
Cystic Fibrosis
Pivotal Role of Glutathione System Dysfunction and Implications for Therapy

Valerie M. Hudson

Brigham Young University, Provo, Utah, USA

The Cystic Fibrosis Transmembrane Regulator (CFTR) should no longer be viewed primarily as a ‘chlorideAbstract
channel’ but recognized as a channel that also controls the efflux of other physiologically important anions, such
as glutathione (GSH) and bicarbonate. More effective approaches to cystic fibrosis treatment may result from
this reconceptualization of the CFTR by researchers and clinicians. For example, oxidant damage in cystic
fibrosis has been assumed to be a significant part of the pathophysiology of the disease. Generally speaking,
antioxidant status in cystic fibrosis is compromised. However, until recently this was seen as secondary to the
excessive chemoattraction of neutrophils in this disease caused by mutation of the CFTR protein, leading to a
high oxidant burden. New findings suggest that the cystic fibrosis mutations in fact cause a primary dysfunction
in the system of one of the body’s most important antioxidant and immune-signaling substances: the reduced
GSH system. Cystic fibrosis mutations significantly decrease GSH efflux from cells without redundant channels
to the CFTR; this leads to deficiency of GSH in the epithelial lining fluid of the cystic fibrosis lung, as well as in
other compartments, including immune system cells and the gastrointestinal tract. This deficiency is exaggerated
over time as the higher-than-normal oxidant burden of cystic fibrosis leads to successively larger decrements in
GSH without the normal opportunity to fully recover physiologic levels. This GSH system dysfunction not only
may be the trigger for initial depletion of other antioxidants but also may play a role in initiating the
over-inflammation characteristic of cystic fibrosis. Proper GSH system functioning also affects immune system
competence and mucus viscosity, both of relevance to cystic fibrosis pathophysiology. In a way, cystic fibrosis
may be thought of as the first identified disease with GSH system dysfunction.

This overview provides a review of the most pertinent recent research findings in this area. Exogenous
augmentation of GSH in the lung epithelial lining fluid is possible, and therapeutic approaches include
administration of aerosolized buffered GSH, intravenous GSH, and oral GSH. However, it is important to
remember that cystic fibrosis pathophysiology is multifactorial, and rectification of GSH system dysfunction in
cystic fibrosis patients will not eliminate all harmful effects of the disease. The promising results of two clinical
trials of aerosolized buffered GSH in cystic fibrosis patients have been published or accepted for publication at
the time of this writing. GSH depletion in lung epithelial lining fluid has also been noted in other respiratory
diseases such as COPD, idiopathic pulmonary fibrosis, and adult respiratory distress syndrome, and therapies to
augment GSH may be contemplated in these diseases as well.

Cystic fibrosis disease is the result of a mutation of the cystic colonization of the lungs by bacteria and fungi and auto-destruc-
fibrosis transmembrane regulator (CFTR) protein, resulting in tion of lung tissue by excessive inflammation even in the absence
missing or defective cellular anion efflux channels in epithelial of pathogen challenge (and accelerated by pathogen challenge
cells. Most cystic fibrosis patients ultimately die of respiratory when it occurs). The excessive inflammation has been linked to
failure, as a result of deterioration in pulmonary function. There the cystic fibrosis mutation itself and is associated with greater
are several causes for deterioration in lung function, including than normal chemoattraction for neutrophils as a result of higher
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constitutive levels of, for example, interleukin (IL)-8.[1-8] The important roles of GSH, then, is to act as a water-soluble antioxi-
oxidant burden caused by such excessive inflammation appears to dant. Not only can it neutralize oxidants through an enzymatic
overwhelm natural antioxidant defenses. The resulting damage to pathway utilizing GSH peroxidase, it is also capable of neutraliz-
lung tissue allows for greater adhesion of pathogens,[9] in addition ing oxidants directly without the use of an enzymatic pathway.[16]

to reducing lung function directly.[10] In cystic fibrosis, however, epithelial cells still produce GSH
New research findings, however, suggest that the traditional normally, but one result is significant impairment of the ability of

view of disease pathogenesis needs some modification. It now cells that do not possess a channel redundant to the CFTR to efflux
appears that cystic fibrosis mutations cause a primary dysfunction GSH to fulfill its functions in the extracellular milieu.
in one of the most important antioxidant and immune-signaling Each antioxidant system – fat-soluble, water-soluble, and enzy-
substances: the reduced glutathione (GSH) system. Dysfunction in matic – protects the cell within its own sphere of action. Some
the GSH system may be the catalyst for initial depletion of other systems operate within the cytosol, which others operate at the cell
antioxidants and may play a role in priming and perpetuating membrane or are active in the extracellular milieu. GSH operates
excessive inflammation characteristic of cystic fibrosis. Neverthe- both within the cytosol and in the extracellular milieu. In these
less, it is important to remember that cystic fibrosis pathophysiolo- compartments, it is capable of directly reducing oxidants and it
gy is multifactorial and that not all cystic fibrosis disease manifes-

also reacts with GSH peroxidase, located in the cell membrane, to
tations can be linked to GSH system dysfunction.

neutralize oxidants. GSH is replenished in two ways: by interac-
This modification of the traditional view is in line with cut- tion of GSH disulfide (GSSG) with the enzyme GSH reductase

ting-edge cystic fibrosis research, which suggests that the sole
and by synthesis of GSH within the cell (i.e. de novo or after

focus on the CFTR channel as a chloride efflux channel has
cleavage of extracellular GSH and transport of component amino

obscured other significant functions associated with it. Current
acids back into the cell). Circulation of GSH effluxed from cells

research now views the CFTR channel as, at the very least, a
throughout the body may allow for higher levels of GSH particu-

chloride, bicarbonate, and GSH efflux channel. Undoubtedly this
larly in the extracellular compartments, such as the lung.

list will be expanded in the future. This new and fundamental shift
The various antioxidant systems are interdependent, to onein the way the CFTR channel is viewed may allow for the

degree or another, for proper function. The crippling of one systemdevelopment of innovative and effective therapies for cystic fibro-
leads to decreased protection by other antioxidant systems. With-sis. In this article, we will focus on the CFTR as a GSH efflux
out GSH, as we have seen, GSH peroxidase is unable to functionchannel and discuss its significance for the respiratory system. It is
as an antioxidant.[17] Antioxidant systems such as GSH, ascorbicworth noting that preliminary studies of the role of bicarbonate
acid, tocopherol, and ubiquinol-10[18,19] are interdependent, andsecretion in the lung have shown that the lack of functional CFTR
normal levels of each in reduced form are required to maintainmay result in a decrease in the pH of the cystic fibrosis lung, which
normal levels of the others in reduced form.[20] In addition, GSHmay also have pathologic consequences;[11,12] however, this find-
deficiency is linked to decreased activity of catalase and superox-ing is disputed elsewhere.[13-15] The newly understood role of
ide dismutase.[20] GSH deficiency also taxes the fat-soluble antiox-CFTR as a GSH and bicarbonate efflux channel also has important
idant systems by permitting greater levels of lipid peroxidation,implications for gastrointestinal complications associated with
yielding damaging metabolites.[20-27] This genetic chink in thecystic fibrosis. In this article, discussion will be confined to the
antioxidant armor of cystic fibrosis patients predisposes them toeffects of CFTR mutation on the respiratory system only.
have successively larger decrements in antioxidant protection over
time, as other antioxidants are consumed in greater quantities or1. Understanding the Role of the Glutathione (GSH)
left unused as a result of impaired GSH efflux.System in Normal Lung Health

Furthermore, recent studies have demonstrated the importance
of S-glutathiolation of proteins under conditions of oxidative orVirtually all cells of the body produce thiol-reduced GSH from
nitrosative stress.[28,29] To prevent irreversible loss of intracellularthe three amino acids glutamine, glycine, and cysteine. Cysteine
and extracellular protein function under such stress, mixed disul-serves as the rate-limiting amino acid for GSH production. It is
fides are formed between protein cysteines and GSH. These S-estimated that an adult male produces approximately 10g of GSH
glutathiolated proteins are more stable and can be dethiolated byper day. Not only is GSH present in the cells of the body, it also
either non-enzymatic reduction or enzymatic cleavage of the disul-bathes the extracellular spaces of the body, with high extracellular
fide bond. Thus, S-glutathiolation allows for reversible regulation,levels in organ systems that come in contact with the oxidant-rich
and therefore generalized protection, of sensitive proteins.atmosphere, such as the cornea and the lung. One of the most
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A disrupted systemic antioxidant shield leads to predictable total GSH within such cells may remain normal, but the
damage to lung tissue by oxidants. Oxidants directly harm sensi- GSH : GSSG ratio may become substantially decreased. Howev-
tive lung epithelia. In addition, they are able to inactivate an- er, immune system cells are among the class of cells that have
tiproteases, which then leads to increased elastase damage, in- channels redundant to the CFTR. With a growing extracellular
creased mucus secretion, and deranged immune signaling.[30-34] deficit, immune system cells may actually attempt to efflux GSH
Oxidants also adversely affect ciliary beat function in the lung, and to rectify that deficit. Furthermore, with the increasing oxidant
lung surfactant levels are diminished by the oxidant burden.[33] burden, immune system cells may use up their stores of GSH in
There is an increased production of chloramines, which further self-protection. Immune cells then become GSH deficient. All in
decreases epithelial integrity.[35-37] A higher oxidant burden also all, what the body senses in cystic fibrosis is that there is some
creates cell structure abnormalities, which may lead to impaired threat that is using up all of the GSH in oxidative reactions, even
cell function or even premature cell death.[38-53] In the lung, though that threat is nonexistent. What is really occurring in cystic
generalized bronchoconstriction can be another consequence of fibrosis is defective GSH efflux, but the body has no way of telling
decreased antioxidant functioning.[54] Damage to the epithelial the difference.
tissue of the lung also permits greater adhesion of pathogens.[55] The body responds by mobilizing itself to meet the nonexistent
Oxidants can also inactivate other parts of the GSH system, such threat. In short, it inflames. GSH deficiency in leukocytes causes
as GSH reductase and γ-glutamylcysteine transferase, both neces- increased release of oxidants such as hydrogen peroxide.[70] Cellu-
sary for cellular protection and proper redox functionality.[56-58] lar GSH deficiency causes increased transcription of nuclear fac-
Protein S-glutathiolation will decrease, resulting in irreversible tor-κB, which then codes for greater levels of inflammatory
loss of sensitive protein function.[29] cytokines, such as tumor necrosis factor-α, activator protein-1,

A second consequence of impaired GSH efflux is increased monocyte chemoattractant protein-1, IL-8, and IL-1a.[71-85] Such a
viscosity of mucus. GSH plays an important role in mucolysis of cytokine profile creates inflammation and recruitment of neutro-
disulfide bonds in mucus, in much the same manner as the more phils and macrophages even in the absence of a threat, which is
well known cysteine donors such as N-acetylcysteine (NAC).[59] precisely what occurs in cystic fibrosis. (Of course, when a patho-
Increased viscosity of mucus has important consequences to the gen threat does present itself, the inflammation becomes even
lung environment.[59-67] more excessive.) As long as full GSH replenishment cannot occur

(because of defective GSH efflux from most of the cells of theFinally, the redox system of GSH, as indicated by the
body), the inflammation will continue and become chronic, as it isGSH : GSSG ratio manifesting redox potential, is an important
in cystic fibrosis.immune system signal. The GSH : GSSG ratio is usually greater

than 9 : 1, sometimes reaching over 100–200 : 1, depending on the In addition to chronic inflammation, the continuing inability to
compartment. When that ratio is substantially decreased or there is replenish GSH, especially in immune cells, creates a situation of
a decrease in total GSH (GSH + GSSG), the body appears to immune incompetence. GSH deficiency in leukocytes causes, in
interpret such events as a call for assistance from the immune general, impaired release of lysosomal enzymes, decreased phago-
system to cope with some threatening challenge that is resulting in cytosis, and premature apoptosis.[70,86-100] GSH deficiency also
pathologic oxidative reactions that are outpacing GSH replenish- creates a situation of incomplete immune system signaling, be-
ment. For example, Day and colleagues[68,69] have found that when cause GSH reduction of disulfide bonds is necessary for such
normal mouse lung tissue is challenged with Pseudomonas aerugi- signaling. For example, antigen-presenting cells use the reductive
nosa, there is a 3-fold induction in epithelial lining fluid (ELF) power of GSH to present antigens to T cells.[101-104] B cells appear
GSH levels and a 2-fold induction in CFTR levels, presumably to similarly affected,[105,106] and activation of T and B cells appears
offset increased oxidative reactions. The inability to effect this related to GSH levels.[107-112] Interferon-γ signaling is also depen-
large increase in ELF GSH because of ineffectual transport due to dent on the presence of GSH.[113] Such interruptions of appropriate
CFTR mutation will substantially alter both the redox ratio and the immune signaling begin to shift the organism to a more T helper-2
level of total GSH. type of response, which is less effective in pathogen clear-

It is important to understand how the body reads the effects of ing.[101,107,114-118] In addition, GSH is necessary to create a reservoir
CFTR absence or malfunction on the GSH system. Cells without of nitric oxide (NO) [via creation of s-nitrosoglutathione
channels redundant to CFTR, such as lung epithelia (whose chan- (GSNO)], and the lack of such a reservoir leads to a generalized
nels redundant to the CFTR are at the basolateral, not the apical, lack of NO itself in the lung environment.[119-130] NO not only has
surface), will not be able to export GSH to the extracellular milieu, important bactericidal properties but also is necessary in cell
and the extracellular deficit may become quite severe. Levels of signaling and smooth muscle relaxation and helps regulate ciliary
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Oxidant injury is unchecked, and
chronic inflammation begins

Leukocytes are drawn into the airways, and
GSH leaks out of the PMNs through MRP

Mucous thickens

Leukocytes are then depleted of intracellular GSH
necessary for phagocytosis,

oxidative burst, and other normal function.
This leads to premature apoptosis

Weakened immunity results in
colonization of bacteria

 

Chronic infection and inflammation results in increased
elastase activity and destruction of lung structures; 

bronchiectesis develops

S-Glutathiolation
impaired

GSH-depleted
leukocytes transcribe

NF-κB, amplifying
inflammatory cascade

Preserved epithelial
intracellular GSH
impairs apoptosis
of infected lung

epithelium

Other antioxidants 
are depleted

Extracellularly, total GSH and GSH/GSSG ratios are abnormally low

Defective CFTR protein in membrane does not allow 
normal egress of GSH from lung epithelial cells

Fig. 1. The influence of diminished glutathione transport on the pathophysiology of cystic fibrosis. GSH = glutathione; GSSG = glutathione disulfide; MRP =
multidrug resistance-associated protein; NF-κB = nucleus transcription factor κB; PMN = polymorphonuclear leukocyte. 

beat function.[131-137] When antioxidant defenses are compromised, GSH. Afer clamping the CFTR channels of Chinese hamster ovary
superoxide anion will scavenge NO almost instantaneously, the cells, Linsdell and Hanrahan compiled a list of substances that
reaction limited only by the extent of diffusion. The depletion of

were subsequently not effluxed. GSH was on the list. Since that
NO has important consequences for both lung function and im-

study published in 1998, however, it was the work of Gao andmune function.
colleagues[139] that arguably pushed that insight further. Using cellIn short, then, a generalized GSH deficiency will cause inflam-

mation coupled, paradoxically, with decreased immune system lines of cystic fibrosis lung epithelia, this team was able to
competence to clear pathogens. These effects are in addition to the demonstrate markedly decreased GSH efflux. Velsor and col-
loss of antioxidant protection and mucolytic activity noted above

leagues[140] also found a 50% reduction in GSH levels in the ELF
in connection with GSH deficiency. The CFTR mutations that

of the lung in uninfected CFTR knockout mice and a lack ofcause cystic fibrosis produce these consequences as a result of
severely impaired efflux of GSH from most cells of the body. normal induction of GSH in the ELF when challenged by P.
Figure 1 represents a summary of how diminished GSH transport aeruginosa.[69] Kogan and colleagues[141,142] found this same di-
influences the pathophysiology of cystic fibrosis.

minished GSH efflux with a variety of CFTR mutants, including

G551D, R347D, K464A, and K1250A, and through the use of
2. GSH System Dysfunction in Cystic Fibrosis

sophisticated tests were able to confirm that purified CFTR protein

The evidence for a primary GSH system dysfunction in cystic alone directly mediated nucleotide-dependent GSH flux and not
fibrosis is steadily growing. via other associated chloride transport proteins.[142] Finder et

al.[143] also document a 49% reduction of GSH in bronchoalveolar
2.1 Effect of CFTR Mutation on Efflux of GSH

lavage fluid from cystic patients with fibrosis. The findings from

these five research teams constitute the ‘smoking gun’: cysticIn retrospect, it was the work of Linsdell and Hanrahan[138] that
first identified that the CFTR channel played a role in the efflux of fibrosis directly causes significantly impaired GSH efflux.

 2004 Adis Data Information BV. All rights reserved. Treat Respir Med 2004; 3 (6)
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2.2 GSH Deficiency in the Cystic Fibrosis dant to the CFTR have also been noted: for example, multidrug
Lung Environment resistance-associated protein 1 has been shown to be upregulated

in cystic fibrosis erythrocytes.[150]

If we conceive of three distinct compartments in the cystic
2.3 Related Phenomenafibrosis lung environment, we find empirical evidence that GSH

deficiency arises in the two compartments where the deficiency As part of this hypothesis of mutation-derived GSH efflux
would be expected if a transport abnormality were at fault. The impairment, we should find that, other than the effects of the
three compartments to visualize are (i) cells that do not have a mutation, the rest of the GSH antioxidant system remains intact in
channel redundant to the CFTR (at least at the apical surface), such patients with cystic fibrosis. This is in fact the case: at least normal
as the epithelium of the lung; (ii) the extracellular milieu, com- levels of GSH peroxidase and γ-glutamylcysteine synthetase and
posed primarily of the lung ELF; and (iii) cells that do have increased levels of γ-glutamylcysteine transferase, γ-glutamyl
channels redundant to the CFTR (such as leukocytes or erythro- transpeptidase, and GSH reductase have been found in patients
cytes). with cystic fibrosis.[17,144,148,151-153] Therefore, the observed GSH

Gao and colleagues[139] found normal levels of total GSH in the deficiency is a primary deficiency not caused by malfunctions in
first compartment, which included cystic fibrosis lung epithelial other parts of the overall GSH antioxidant system.
cells that did not have a channel redundant to the CFTR (at least at
the apical surface). This should be expected, as there is no GSH 2.4 Impaired GSH Efflux and Cystic Fibrosis Pathology
synthesis defect in cystic fibrosis as there is, say, in AIDS. The
GSH : GSSG ratio in these cells was not ascertained and remains Many of the effects that would be expected from impaired GSH
to be analyzed. Note that the lack of ability to be depleted of GSH efflux in most cells have been noted as part of cystic fibrosis
may lead to decreased levels of appropriate apoptosis when these pathology.
cells are infiltrated by pathogens. Inflammation in the absence of pathogen challenge has been

In the second compartment, consisting of ELF, several studies noted in the youngest of infants with cystic fibrosis.[1,2,154-157]

have found progressive GSH deficiency arising and persisting Other antioxidant systems of the body have been found to be
over time in patients with cystic fibrosis. Hull et al.[144] found that compromised in cystic fibrosis. This is in part a result of fat
non-infected cystic fibrosis do not appear to have a GSH deficien- malabsorption due to pancreatic insufficiency in most patients
cy in their ELF, though only the total GSH, and not the with cystic fibrosis, resulting in lower levels of retinol and tocoph-
GSH : GSSG ratio, was analyzed. An altered GSH : GSSG ratio in erol, but this situation can be accelerated and aggravated by GSH
the ELF of infants with cystic fibrosis would be evidence that the deficiency. Affected systems include at least retinol, betacarotene,
impaired GSH efflux has begun to have an impact in the respirato- tocopherol, activity of GSH peroxidase, ascorbic acid, and activity
ry system of these patients.[145,146] Hull et al. did find that infected of superoxide dismutase.[17,158-163] Antiproteases have been shown
infants with cystic fibrosis infants had slightly lower total levels of to be neutralized in cystic fibrosis, and surfactant levels are
GSH in their ELF. Brown et al.[147] determined that, beyond lower.[164,165] There is an altered cytokine profile consonant with
infancy, plasma sulfhydryls decreased significantly with age in GSH deficiency, and also exhaled NO is not elevated, as it is in
patients with cystic fibrosis. Roum et al.[148] found a profound other respiratory diseases with a high oxidant burden.[1-8,166-178]

deficiency of GSH in the ELF in adult patients with cystic fibrosis, Interestingly, in vitro, the addition of S-nitrosoglutathione to
with levels of 5–10% of normal when oxidant burden was factored delF508 cystic fibrosis cell lines has been shown to help in the
in. This team also found plasma GSH levels of about 50% of maturation and functionality of the mutated protein.[179,180] Fur-
normal in these adult patients with cystic fibrosis; in both the ELF thermore, decreased apoptosis has been noted in pathogen-infil-
and plasma, they also found an extremely decreased GSH : GSSG trated cells without redundant anion channels in cystic fibrosis.[181]

ratio. Finder et al.[143] found a 49% reduction of GSH in In conclusion, the view that CFTR acts as an important GSH
bronchoalveolar lavage fluid from patients with cystic fibrosis. efflux channel is gaining strength through recent empirical re-

In the third compartment, including cells with channels redun- search findings. In addition to several ‘smoking guns’, the related
dant to the CFTR, in the lung environment, Tirouvanziam[149] phenomena and effects that one would expect if cystic fibrosis
found substantially lower levels of GSH in sputum neutrophils caused GSH efflux impairment are also empirically demonstrable
from patients with cystic fibrosis compared with blood neutro- (figure 1). This evidence leads us to inquire about therapeutic
phils, which also correlated with cell death rates. Furthermore, in implications. However, it is important to remember that cystic
this compartment, alterations in the expression of channels redun- fibrosis pathophysiology is multifactorial, and rectification of

 2004 Adis Data Information BV. All rights reserved. Treat Respir Med 2004; 3 (6)
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GSH system dysfunction in patients with cystic fibrosis will not Oral administration of GSH is not to be overlooked. Previously,
eliminate all harmful effects of the disease. researchers could not agree on whether GSH was cleaved in the

digestive tract or taken up intact in the jejunum. Newer studies
seem to indicate the latter.[196-200] Furthermore, there is new and3. Therapeutic Implications
innovative research being conducted to create a novel peptide that
could serve as a GSH efflux for cystic fibrosis cells.[201] Finally,The usual and most direct route to augment GSH levels is to
intravenous GSH has been used as a treatment for radiationprovide a cysteine donor, such as NAC, to the patient. As cysteine
poisoning, as well as for other diseases such as Parkinson dis-is the rate-limiting amino acid for GSH synthesis, this route is
ease.[183,202,203] Given that it is most likely that the lung is a netgenerally effective in otherwise healthy individuals. However, as
importer of circulating GSH, this route might bear further investi-we have seen, GSH synthesis is not impaired in cystic fibrosis; the
gation in the case of cystic fibrosis.problem is in GSH efflux from the cells in which GSH is synthe-

Other respiratory ailments are marked by a decrease in GSH insized. Nevertheless, Hosseini and colleagues[182] have used a cys-
the ELF. Clinicians treating such illnesses may want to examineteine-rich whey powder to treat C57B1/6 mice infected with
GSH augmentation in diseases such as adult respiratory distressPseudomonas sp. and noted some improvement in mortality;
syndrome (ARDS), COPD, idiopathic interstitial pneumonia, IPFtherefore, precursors might usefully complement a strategy of
of nonsmokers, idiopathic respiratory distress syndrome, and dif-exogenous GSH augmentation.
fuse fibrosing alveolitis.Direct augmentation of GSH levels in the ELF with aerosolized

In summary, augmentation of GSH in the ELF is feasible andGSH has been carried out in vivo, including in patients with cystic
may be useful not only for cystic fibrosis, but also for several otherfibrosis, AIDS, idiopathic pulmonary fibrosis (IPF), COPD, and
respiratory conditions. Given the vasodilatory and anti-inflam-other diseases.[183-191] Unfortunately, GSH in solution has a pH of
matory properties of GSH, there may be contraindications to its2.7 and is an irritant to the lung. This has hampered the usefulness
use. It could be speculated that in patients with a history ofof this therapy for patients with respiratory ailments. Two clinical
hemoptysis/pneumothorax, those yielding a positive culture fortrials, using buffered GSH with a pH of 5–6, have been carried out
Burkholderia cepacia, or those with an FEV1 <30% predicted, thein patients with cystic fibrosis.
use of GSH may be contraindicated until further, more extensiveIn the first trial, using the AKITA 1 inhalation device, Griese
trials have been conducted.et al.[192] were able to increase the GSH level in bronchoalveolar

lavage fluid in patients with cystic fibrosis through inhalation of a 4. Conclusion
buffered GSH solution. One hour after inhalation, GSH levels
increased 3- to 4-fold, and at 12 hours levels of GSH were still In conclusion, new research is beginning to alter our under-
almost double those at baseline. Griese et al. found that with 14 standing of the CFTR channel. It is no longer possible to view it
days’ use of three-times-daily buffered GSH 300–450mg, FEV1 merely or even primarily as a chloride efflux channel. At this point
and FVC increased an average of 6–7% over baseline (p < in time, it must be viewed as a chloride/GSH/bicarbonate channel,
0.001).[193] No change in oxidative markers was observed, though though this list may grow in the future. As we more fully under-
this might be because of the short duration of therapy. stand the nature and functions of the CFTR channel, new therapeu-

The second study carried out by Bishop et al.[194,195] was a tic approaches will begin to come into view, as we have seen with
randomized, double-blind, placebo-controlled trial. The dosage of GSH. In one respect, cystic fibrosis may be viewed (at least in
buffered GSH was 66 mg/kg/day, divided into four inhalation part) as the first identified disease with GSH transport dysfunction.
sessions over a 6-week period. Results indicated that 11 of 13 Clinicians may be able to make effective use of these new
clinical indicators examined favored the GSH treatment group insights from cutting-edge research. However, it is important to
over the placebo group, including lung function scores, and statis- remember that the pathophysiology of cystic fibrosis is mul-
tical significance was achieved in improvement in several of the tifactorial, and rectification of GSH system dysfunction in cystic
indicators, including peak flow, and in compliance analysis and fibrosis patients will not eliminate all harmful effects of the
cough. disease. Indeed, some clinicians report that a significant propor-

The results of these two clinical trials of aerosolized buffered tion of their patients with cystic fibrosis are already using GSH
GSH are very promising and warrant larger, multicenter trials of and/or NAC without the physician’s knowledge.[204] Clinicians
longer duration. should inquire from their patients with cystic fibrosis if they are

1 The use of trade names is for product identification purposes only and does not imply endorsement.
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